【通意千问】大模型GitHub开源工程学习笔记(2)--使用Qwen进行推理的示例代码解析,及transformers的库使用
作者:小教学发布时间:2023-10-01分类:程序开发学习浏览:84
导读:使用Transformers来使用模型如希望使用Qwen-chat进行推理,所需要写的只是如下所示的数行代码。请确保你使用的是最新代码,并指定正确的模型名称和路径,如Qwe...
使用Transformers来使用模型
如希望使用Qwen-chat进行推理,所需要写的只是如下所示的数行代码。请确保你使用的是最新代码,并指定正确的模型名称和路径,如Qwen/Qwen-7B-Chat
和Qwen/Qwen-14B-Chat
这里给出了一段代码
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
# 可选的模型包括: "Qwen/Qwen-7B-Chat", "Qwen/Qwen-14B-Chat"
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
# 打开bf16精度,A100、H100、RTX3060、RTX3070等显卡建议启用以节省显存
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
# 打开fp16精度,V100、P100、T4等显卡建议启用以节省显存
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
# 使用CPU进行推理,需要约32GB内存
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="cpu", trust_remote_code=True).eval()
# 默认使用自动模式,根据设备自动选择精度
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True).eval()
# 可指定不同的生成长度、top_p等相关超参
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
# 第一轮对话
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
# 你好!很高兴为你提供帮助。
# 第二轮对话
response, history = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
print(response)
# 这是一个关于一个年轻人奋斗创业最终取得成功的故事。
# 故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。
# 为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。
# 毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。
# 最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。
# 李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。
# 第三轮对话
response, history = model.chat(tokenizer, "给这个故事起一个标题", history=history)
print(response)
# 《奋斗创业:一个年轻人的成功之路》
这段代码怎么用呢?
我们来分析一下吧\
从transformers库中导入类
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
这两行是从Hugging Face的Transformers库中导入了三个类:
【AutoModelForCausalLM】:这是一个用于加载预训练的因果语言模型(Causal Language Model)的类。因果语言模型是一种可以生成连续文本的模型,例如在对话生成或故事生成等任务中。
【AutoTokenizer】:这是一个用于加载预训练的分词器(Tokenizer)的类。分词器是用于将输入文本切分成模型可以理解的单元(如单词、子词或字符)的工具。
【GenerationConfig】:这是一个用于配置生成任务的类。它可以用于设置生成任务的各种参数,例如生成文本的最大长
- 上一篇:主从复制是怎么实现的?
- 下一篇:深信服云桌面用户忘记密码后的处理
- 程序开发学习排行
- 最近发表
-
- Wii官方美版游戏Redump全集!游戏下载索引
- 视觉链接预览最好的WordPress常用插件下载博客插件模块
- 预约日历最好的wordpress常用插件下载博客插件模块
- 测验制作人最好的WordPress常用插件下载博客插件模块
- PubNews Plus|WordPress主题博客主题下载
- 护肤品|wordpress主题博客主题下载
- 肯塔·西拉|wordpress主题博客主题下载
- 酷时间轴(水平和垂直时间轴)最好的wordpress常用插件下载博客插件模块
- 作者头像列表/阻止最好的wordPress常用插件下载博客插件模块
- Elementor Pro Forms最好的WordPress常用插件下载博客插件模块的自动完成字段