联系我们
简单又实用的WordPress网站制作教学
当前位置:网站首页 > 程序开发学习 > 正文

AIGC:【LLM(七)】——Baichuan2:真开源可商用的中文大模型

作者:小教学发布时间:2023-09-25分类:程序开发学习浏览:97


导读:文章目录一.模型介绍二.模型部署2.1CPU部署2.2GPU部署三.模型推理3.1Chat模型推理3.2Base模型推理四.模型量化4.1量化方法4....

文章目录

  • 一.模型介绍
  • 二.模型部署
    • 2.1 CPU部署
    • 2.2 GPU部署
  • 三.模型推理
    • 3.1 Chat 模型推理
    • 3.2 Base 模型推理
  • 四.模型量化
    • 4.1 量化方法
    • 4.2 在线量化
    • 4.3 离线量化
    • 4.4 量化效果
  • 五.模型微调
    • 5.1 依赖安装
    • 5.2 单机训练
    • 5.3 多机训练
    • 5.4 轻量化微调

一.模型介绍

Baichuan 2 是百川智能推出的新一代开源大语言模型,采用 2.6 万亿 Tokens 的高质量语料训练。其在多个权威的中文、英文和多语言的通用、领域 benchmark 上取得同尺寸最佳的效果。
在这里插入图片描述
在这里插入图片描述

目前开源发布的包含有 7B、13B 的 Base 和 Chat 版本,并提供了 Chat 版本的 4bits 量化。所有版本对学术研究完全开放。同时,开发者通过邮件申请并获得官方商用许可后,即可免费商用。
在这里插入图片描述
下载链接
【Baichuan2-7B-Base】:https://huggingface.co/baichuan-inc/Baichuan2-7B-Base
【Baichuan2-13B-Base】:https://huggingface.co/baichuan-inc/Baichuan2-13B-Base
【Baichuan2-7B-Chat】:https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat
【Baichuan2-13B-Chat】:https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
【Baichuan2-7B-Chat-4bits】:https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat-4bits
【Baichuan2-13B-Chat-4bits】:https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits

除了模型的全面公开之外,百川智能还开源了模型训练的 Check Point,并公开了 Baichuan 2 技术报告,详细介绍了模型的训练细节。
【代码仓库】:https://github.com/baichuan-inc/Baichuan2
【技术报告】:https://cdn.baichuan-ai.com/paper/Baichuan2-technical-report.pdf
在这里插入图片描述

二.模型部署

2.1 CPU部署

Baichuan 2 模型支持 CPU 推理,但需要强调的是,CPU 的推理速度相对较慢。需按如下方式修改模型加载的方式。

# Taking Baichuan2-7B-Chat as an example
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", torch_dtype=torch.float32, trust_remote_code=True)

2.2 GPU部署

依靠 streamlit 运行以下命令,会在本地启动一个 web 服务,把控制台给出的地址放入浏览器即可访问。

streamlit run web_demo.py

三.模型推理

3.1 Chat 模型推理

>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers.generation.utils import GenerationConfig
>>> tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", use_fast=False, trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
>>> model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan2-13B-Chat")
>>> messages = []
>>> messages.append({"role": "user", "content": "解释一下“温故而知新”"})
>>> response = model.chat(tokenizer, messages)
>>> print(response)
"温故而知新"是一句中国古代的成语,出自《论语·为政》篇。这句话的意思是:通过回顾过去,我们可以发现新的知识和理解。换句话说,学习历史和经验可以让我们更好地理解现在和未来。
这句话鼓励我们在学习和生活中不断地回顾和反思过去的经验,从而获得新的启示和成长。通过重温旧的知识和经历,我们可以发现新的观点和理解,从而更好地应对不断变化的世界和挑战。

3.2 Base 模型推理

>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Base", trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Base", device_map="auto", trust_remote_code=True)
>>> inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt')
>>> inputs = inputs.to('cuda:0')
>>> pred = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.1)
>>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
登鹳雀楼->王之涣
夜雨寄北->李商隐

四.模型量化

为了让不同的用户以及不同的平台都能运行 Baichuan 2 模型,百川智能针对 Baichuan 2 模型做了相应地量化工作(包括 Baichuan2-7B-Chat 和 Baichuan2-13B-Chat),方便用户快速高效地在自己的平台部署 Baichuan 2 模型。

4.1 量化方法

Baichuan 2 的采用社区主流的量化方法:BitsAndBytes。该方法可以保证量化后的效果基本不掉点,目前已经集成到 transformers 库里,并在社区得到了广泛应用。BitsAndBytes 支持 8bits 和 4bits 两种量化,其中 4bits 支持 FP4 和 NF4 两种格式,Baichuan 2 选用 NF4 作为 4bits 量化的数据类型。基于该量化方法,Baichuan 2 支持在线量化和离线量化两种模式。

4.2 在线量化

对于在线量化, Baichuan 2支持 8bits 和 4bits 量化,使用只需要先加载模型到 CPU 的内存里,再调用quantize()接口量化,最后调用 cuda()函数,将量化后的权重拷贝到 GPU 显存中。实现整个模型加载的代码非常简单,以 Baichuan2-7B-Chat 为例:
8bits 在线量化

model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", torch_dtype=torch.float16, trust_remote_code=True)
model = model.quantize(8).cuda() 

4bits 在线量化

model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", torch_dtype=torch.float16, trust_remote_code=True)
model = model.quantize(4).cuda() 

需要注意的是,在用 from_pretrained 接口的时候,用户一般会加上 device_map=“auto”,在使用在线量化时,需要去掉这个参数,否则会报错。

4.3 离线量化

为了方便用户的使用,Baichuan2提供了离线量化好的 4bits 的版本 Baichuan2-7B-Chat-4bits,供用户下载。 用户加载 Baichuan2-7B-Chat-4bits 模型很简单,只需要执行:

model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Chat-4bits", device_map="auto", trust_remote_code=True)

对于 8bits 离线量化,Hugging Face transformers 库提供了相应的 API 接口,可以很方便的实现 8bits 量化模型的保存和加载。用户可以自行按照如下方式实现 8bits 的模型保存和加载:

# Model saving: model_id is the original model directory, and quant8_saved_dir is the directory where the 8bits quantized model is saved.
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True, device_map="auto", trust_remote_code=True)
model.save_pretrained(quant8_saved_dir)
model = AutoModelForCausalLM.from_pretrained(quant8_saved_dir, device_map="auto", trust_remote_code=True)

4.4 量化效果

量化前后显存占用对比 (GPU Mem in GB):
在这里插入图片描述

量化后在各个 benchmark 上的结果和原始版本对比如下:
在这里插入图片描述

五.模型微调

5.1 依赖安装

git clone https://github.com/baichuan-inc/Baichuan2.git
cd Baichuan2/fine-tune
pip install -r requirements.txt
  • 如需使用 LoRA 等轻量级微调方法需额外安装 peft
  • 如需使用 xFormers 进行训练加速需额外安装 xFormers

5.2 单机训练

下面是一个微调 Baichuan2-7B-Base 的单机训练例子。
训练数据:data/belle_chat_ramdon_10k.json,该样例数据是从 multiturn_chat_0.8M 采样出 1 万条,并且做了格式转换。主要是展示多轮数据怎么训练,不保证效果。

hostfile=""
deepspeed --hostfile=$hostfile fine-tune.py  \
    --report_to "none" \
    --data_path "data/belle_chat_ramdon_10k.json" \
    --model_name_or_path "baichuan-inc/Baichuan2-7B-Base" \
    --output_dir "output" \
    --model_max_length 512 \
    --num_train_epochs 4 \
    --per_device_train_batch_size 16 \
    --gradient_accumulation_steps 1 \
    --save_strategy epoch \
    --learning_rate 2e-5 \
    --lr_scheduler_type constant \
    --adam_beta1 0.9 \
    --adam_beta2 0.98 \
    --adam_epsilon 1e-8 \
    --max_grad_norm 1.0 \
    --weight_decay 1e-4 \
    --warmup_ratio 0.0 \
    --logging_steps 1 \
    --gradient_checkpointing True \
    --deepspeed ds_config.json \
    --bf16 True \
    --tf32 True

5.3 多机训练

多机训练只需要给一下 hostfile ,内容类似如下:

ip1 slots=8
ip2 slots=8
ip3 slots=8
ip4 slots=8
....

同时在训练脚本里面指定 hosftfile 的路径:

hostfile="/path/to/hostfile"
deepspeed --hostfile=$hostfile fine-tune.py  \
    --report_to "none" \
    --data_path "data/belle_chat_ramdon_10k.json" \
    --model_name_or_path "baichuan-inc/Baichuan2-7B-Base" \
    --output_dir "output" \
    --model_max_length 512 \
    --num_train_epochs 4 \
    --per_device_train_batch_size 16 \
    --gradient_accumulation_steps 1 \
    --save_strategy epoch \
    --learning_rate 2e-5 \
    --lr_scheduler_type constant \
    --adam_beta1 0.9 \
    --adam_beta2 0.98 \
    --adam_epsilon 1e-8 \
    --max_grad_norm 1.0 \
    --weight_decay 1e-4 \
    --warmup_ratio 0.0 \
    --logging_steps 1 \
    --gradient_checkpointing True \
    --deepspeed ds_config.json \
    --bf16 True \
    --tf32 True

5.4 轻量化微调

代码已经支持轻量化微调如 LoRA,如需使用仅需在上面的脚本中加入以下参数:

--use_lora True

LoRA 具体的配置可见 fine-tune.py 脚本。使用 LoRA 微调后可以使用下面的命令加载模型:

from peft import AutoPeftModelForCausalLM
model = AutoPeftModelForCausalLM.from_pretrained("output", trust_remote_code=True)




程序开发学习排行
最近发表
网站分类
标签列表